NOM : Bluche	PRENOM: Théodore	CLASSE: MP1
Concours présenté : X		Epreuve : Maths I

Nom de l'examintateur et commentaires éventuels :

M. Rosso

Examinateur gentil et souriant, qui rigole avec vous quand vous vous égarez et arrivez à un résultat faux..c'est déconcertant. Ceci dit, il donne confiance, ce qui n'est pas mal pour une première épreuve.

Sujet:

Montrer qu'il existe une suite extraite qui tend vers n.

J'ai commencé avec le cas particulier $z_i \in \mathbb{R}$.

Puis j'ai essayé de poser le problème avec la définition d'une valeur d'adhérence et en faisant un petit dessin.

Ne voyant pas comment arriver au résultat, j'ai déjà tenté n=1 $u_k = e^{ik\theta}$ avec $\theta = x \times 2\pi$; $x \in \mathbb{N}$, $puis \in \mathbb{Z}$, $puis \in \mathbb{Q}$, $puis \in \mathbb{R}$ et c'est au passage $\mathbb{Q} \to \mathbb{R}$ que j'ai eu du mal

Puis il m'a guidé...

<u>Indications éventuellement données par l'examinateur :</u>

On pose le n-uplet $Z_k = (z_1^k, \ldots, z_n^k)$. Cela définit une suite bornée. Il existe donc une suite extraite $Z_{\varphi(k)} = (z_1^{\varphi(k)}, \ldots, z_n^{\varphi(k)})$ qui converge vers une limite qu'on ne connait pas. Montrer à partir de là que $(1, \ldots, 1)$ est une valeur d'adhérence.

Utiliser le fait que $Z_{\varphi(k)}$ est de Cauchy.